Wednesday, November 5, 2014

Microscale 3-D Printing

Despite the excitement that 3-D printing has generated, its capabilities remain rather limited. It can be used to make complex shapes, but most commonly only out of plastics. Even manufacturers using an advanced version of the technology known as additive manufacturing typically have expanded the material palette only to a few types of metal alloys. But what if 3-D printers could use a wide assortment of different materials, from living cells to semiconductors, mixing and matching the “inks” with precision?

Jennifer Lewis, a materials scientist at Harvard University, is developing the chemistry and machines to make that possible. She prints intricately shaped objects from “the ground up,” precisely adding materials that are useful for their mechanical properties, electrical conductivity, or optical traits. This means 3-D printing technology could make objects that sense and respond to their environment. “Integrating form and function,” she says, “is the next big thing that needs to happen in 3-D printing.”
                                                                                                   
 Left: For the demonstration, the group formulated four polymer inks, each dyed a different color. 

Right: The different inks are placed in standard print heads. 

Bottom: By sequentially and precisely depositing the inks in a process guided by the group’s software, the printer quickly produces the colorful lattice.



A group at Princeton University has printed a bionic ear, combining biological tissue and electronics (see “Cyborg Parts”), while a team of researchers at the University of Cambridge has printed retinal cells to form complex eye tissue. But even among these impressive efforts to extend the possibilities of 3-D printing, Lewis’s lab stands out for the range of materials and types of objects it can print.

No comments:

Post a Comment